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SUMMARY 

The  traditional  approach  for  combustor  development,  based on cut-and-try 
experimentation,  is  very  costly,  and  the  designer of supersonic  combustors 
has  encountered  difficulties  in  the  acquisition  of  meaningful  data.  Recent 
advances  in  computational  capabilities  have  made  it  possible  to  predict  complex 
flow  fields  in  combustors.  Such  computational  approaches  could  supplement  the 
traditional  experimentation  and  help  overcome  some  of  the  difficulties  in  super- 
sonic  combustor  development. 

Two parabolic  flow  computer  programs,  one  based  on  a  finite-difference 
method  and  the  other on  a  finite-element  method,  are  used  at  the NASA Langley 
Research  Center.  Both  programs  are  capable  of  predicting  three-dimensional 
turbulent  reacting  flow  fields  in  supersonic  combustors. A three-dimensional 
turbulent  mixing  experiment  has  been  conducted  for  detailed  evaluation  of  the 
two  computer  programs. To alleviate  the  difficulties  associated  with  high- 
temperature  measurements,  a  cold  (nonreacting)  flow  experiment  was  performed  to 
study  the  mixing  of  helium  jets  with  a  supersonic  airstream  in  a  rectangular 
duct.  Surveys  of  the  flow  field  were  made  at  two  stations  downstream  of  the 
injectors.  The  flow  surveys  at  the  upstream  station  were  used  as  initial  data 
by  both  computer  programs.  The  surveys  at  the  downstream  station  provided  an 
experimental  comparison  to  assess  the  relative  accuracies  of  the  two  programs. 
Computational  efficiencies  were  also  compared. 

In  this  paper,  the  theoretical  foundations  of  the  two  computer  programs 
are  first  introduced.  The  three-dimensional  mixing  experiment  and  the  applica- 
tion  of  two  computer  programs  to  that  experiment  are  then  described.  Finally, 
comparisons  between  the  two  computations  and  between  the  computations  and  the 
experiment  are  made.  In  general,  both  computer  programs  predicted  the  experi- 
mental  results  and  data  trends  reasonably  well.  However,  the  comparison  indi- 
cated  that  the  finite-difference  program  was  more  accurate  in  computation  and 
m r e  efficient  in  both  computer  storage  and  computing  time  than  the  present 
version  of  the  finite-element  program. 

INTRODUCTION 

Recent  advances  in  computational  techniques  and  computer  capabilities  have 
made  it  possible  to  predict  three-dimensional  turbulent  reacting  flow  fields. 
Such  analytical  predictions  are  extremely  valuable  in  the  development of super- 
sonic  combustors  for  planned  hypersonic  airbreathing  engines.  The  traditional 
approach  for  such  combustor  development  has  been  based on expensive  cut-and-try 
experimentation. 

At  present,  two  computer  programs,  SHIP  (ref. 1) and COME (ref. 21, which 
are  capable  of  predicting  three-dimensional  turbulent  flow  fields  in  supersonic 
combustors,  are  operational  at  the NASA Langley  Research  Center.  SHIP  is  based 
on  a  finite-difference  algorithm of Spalding  (ref. 3 )  and C O M E  is based on  a 



finite-element  algorithm  of  Baker  (ref. 4 ) .  The  mathematical  foundations  and 
the  relative  merits of the  two  algorithms  are  well  known;  successful  computa- 
tions  using  these  algorithms  have  appeared  in  the  open  literature  (for  example, 
refs. 2, 3, and 5 to 8) .  However,  direct  comparisons  between  these  two  com- 
puter  programs  have  not  been  made  to  assess  their  computational  capabilities, 
turbulence  models,  numerical  schemes,  and  results.  The  objective  of  this  paper 
is  to  make  such  direct  comparisons  to  assess  both  programs  as  combustor  design 
tools. To aid  in  accomplishing  this  objective,  a  three-dimensional  mixing  flow 
experiment  has  been  conducted  and  both  computer  programs  have  been  applied  to 
predict  the  experimental  flow  field. 

In  the  past,  the  two  computer  programs  were  applied  separately  to  a  mix- 
ing  flow  field  with  normal  injection  of  hydrogen  into  a  supersonic  airstream 
(ref. 9) . However,  meaningful  comparisons  were  not  possible  because  of  differ- 
ent  approaches  to  handling  the  same  flow  problem.  The  finite-element  program 
was applied  downstream  of  the  injection  by  modeling  the  normal  injection  with 
an  equivalent  one-dimensional  virtual  source  (ref. 7 ) .  Since  this  computation 
depends  greatly  on  the  appropriateness  of  one-dimensional  modeling  and  the 
accuracy  of  such  modeling is difficult  to  estimate,  comparison  of  such  a  compu- 
tation  with  experimental  data  can  hardly  establish  the  capability  of  the  com- 
puter  program.  On  the  other  hand,  the  finite-difference  program  was  applied 
across  the  normal  injection  region  even  though  there  was  a  limitation  due  to 
the  parabolic  flow  assumption  (ref. 10). It  was  later  found  that  such  a  compu- 
tation  could  yield  inconsistent  results  because  of  the  presence  of  flow  recir- 
culation. By using  the  near-field  experimental  measurements  of  reference 9 as 
input  data,  the  same  program  was  recently  applied  to  the  flow  field  downstream 
of the  injection  and  the  recirculating  regions  (ref. 11). Because  of  the  insuf- 
ficiently  detailed  initial  data,  only  qualitative  agreement  between  the  compu- 
tation  and  experiment  was  obtained.  Therefore,  to  evaluate  and  establish  the 
three-dimensional  capabilities  of  the  present  computer  programs,  well-designed 
experiments  are  required  which  provide  detailed  flow-field  surveys  at  several 
stations  in  a  supersonic  combustor. 

It is well  recognized  that  there  are  many  technical  difficulties  associated 
with  experimental  measurements  in  the  supersonic  turbulent  reacting  flow  fields 
of  a  combustor.  Because  of  the  highly  turbulent,  high-temperature  environment, 
the  acquisition of  meaningful  data  is  extremely  difficult. To alleviate  the 
difficulties  associated  with  high  temperature,  a  three-dimensional  cold  (nonre- 
acting) flow  experiment  was  performed to study  the  mixing of helium  jets  with 
the  supersonic  airstream  in  a  rectangular  duct.  Surveys  of  the  flow  field  were 
made  at  two  stations  downstream  of  the  injectors,  one  close  to  the  injectors 
and  the  other  further  downstream.  The  flow  surveys at the  upstream  station 
were  then  used  as  initial  data  in  both  computer  programs.  The  surveys  at  the 
downstream  station  provided  an  experimental  comparison  to  assess  the  relative 
accuracies  and  computational  efficiencies  of  the  computer  programs. 

The  mathematical  foundations  and  numerical  schemes of the  two  computer 
programs  are  presented  in  the  first  section.  Details  from  earlier work 
(refs. 1 to 4 )  have  been  collected  and  expanded  to  provide  a  convenient  com- 
parison  of  the  theories.  The  three-dimensional  mixing  experiment  is  then 
described  relative  to  test  conditions,  procedure,  data  acquisition,  and  data 
reduction.  Applications  of  the  two  computer  programs  to  the  experiment  are 
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presented,  and comparisons of flow-field quantities are made between the two 
computations and between the computations and the experiment.  Finally, the 

fields are discussed and conclusions are drawn. 
~ capabilities of the two programs to compute three-dimensional mixing flaw 

A duct cross-sectional area 

A, computational cross-sectional area 

AN, ASIAEf plw 
B I coefficients in difference equation (5) 

a (l) ,a (2)  ,a (3 )  boundary-condition coefficients 

' = a (1) /a ( 2 )  

a,  b, c functional coefficients 

c11c21cDrck empirical constants 

D Van Driest damping factor 

f mass fraction: function of dependent or independent variables 

g function of dependent or independent variables 

H total enthalpy 

h static enthalpy 

K general diffusion coefficient 

k turbulence kinetic energy 

L, a differential  operators 

- zm mixing length 

M Mach number 

m mass  flow rate 

NPr Prandtl number 

nyrnz unit normal to y- and  z-direction, respectively 
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node point 

pressure 

nodal  value vector of dependent variable 

general  dependent  flaw variable 

solution  domain 

solution  domain boundary 

mth  finite-element subdomain 

mth  subdomain boundary 

source  term; surface area 

temperature 

velocity  component in x-,  y-, and  z-direction, respectively 

volume 

weighting function 

rectangular coordinates 

exchange  coefficient 

ratio of specific heats 

boundary-layer thickness 

mixing-layer thickness 

turbulence  dissipation energy  rate 

mixing efficiency 

coefficient in  equation (7a) 

algebraic multiplier; empirical  constant 

viscosity 

kinematic viscosity 

density 

shear stress 
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Q,Y general  functions 

@ space functional 

Subscripts : 

A air 

av aver age 

ef f effective 

He he  li  um 

I  injectant 

R laminar 

m  finite-element  index 

n  node  index 

T total 

t  turbulent 

W wall 

Superscr  ipts : 

a species a 

* approximate  solution 

- restrained  to  boundary of computational domain 

DESCRIPTION OF NUMERICAL METHODS 

In  this  section  the theoretical bases  and numerical  schemes  of  the finite- 
difference (SHIP) and  finite-element (COMOC) computer programs are  described. 
Both programs are  developed on the  basis of an Eulerian formulation in  a  rec- 
tangular  coordinate system (x,  y,  and z) with  the  x-axis in the main  flow 
direction.  The mean  flow velocity components (u, v, and w), pressure (p), 
total enthalpy (H) , and mass  fraction  (f) of a  three-dimensional  turbulent 
mixing  flow  field  are  governed approximately by the Navier-Stokes equations 
together  with  a species equation.  Both programs  can consider flow  with or 
without  chemical reactions.  Moreover,  the flow is  assumed  to  be  composed of 
perfect  gases  with  specific heats  that  are functions  of temperature  and  species. 

The  effect of  turbulence is  introduced by replacing  the  laminar  vis- 
cosity (Pa) or  the  laminar exchange  coefficient by an effective viscosity 
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(l&f = pt + or the corresponding  effective  exchange coefficient. The tur- 
bulent viscosity (y) is determined by means of a turbulence model.  In  the two 
computer programs, different turbulence  models  are used  at the present time and 
they will be discussed separately. 

A parabolic  flaw assumption is  used  in both programs to simplify their 
formulations. Physically, this assumption is  valid  for a flow when there 
exists a predominant flaw direction,  when  the diffusions  of mass,  momentum, 
energy, etc., in this  direction are negligible compared with the corresponding 
convections, and when the downstream pressure has little effect on the upstream 
flaw field. Mathematically, the  set of governing equations reduces to a system 
of parabolic-type equations. Numerically, these equations can be solved in 
succeeding cross-stream (y-z) planes progressing in the main  flow direction. 
Thus, a three-dimensional problem requires  only two-dimensional computer stor- 
age,  and computer time and storage are greatly reduced. However, because of 
the parabolic flaw assumption,  the range of  application of the programs is also 
limited accordingly. 

The different features of two programs are described separately in the 
following discussion. 

Finite-Difference Computer Program  (SHIP) 

The flow field considered in the finite-difference computer program (SHIP) 
is defined by a rectangular parallelepiped.  Any of the  four lateral boundaries 
can be a free, symmetry, or wall surface; for  walls, the boundaries are allowed 
to  expand or contract smoothly in  the main flow direction. The main flow can 
be either subsonic or supersonic. 

The governing equations for three-dimensional parabolic flow can be writ- 
ten as  follows  (see  also ref. 11) : 

Continuity 

a a a 
ax aY aZ “(PU) + --(Pv) + “(PW) = 0 

x-momentum 

y-momentum 
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z-momentum 

Energy 

a a 
a a ( Peff E) a ( Peff ;) ax aY az aY NPr,eff,H aZ NPr,eff,H 

-( ~ u H )  + -( ~ v H )  + “(PwH) = - + -  

(NPr,eff,H - 

(NPr,eff,H - 

Here, N P ~ , ~ ~ ~ , H  and Nprreff,f are  the effective Prandtl numbers for total 
enthalpy and mass fraction, respectively. The  general effective exchange coef- 
fient r is expressed in the following form, 

with Npr,Q and Npr,t being  the  laminar and turbulent Prandtl numbers,  respec- 
tively. Since Npr,Q  and Npr,t are of the order of unity and Llt >> p?, in 
fully developed turbulent flow, r - Llt/NPr,t. Note that some terms in the  set 
of  equations (1) which were omitted in reference 1 have been  included  for com- 
pleteness, and  the finite-difference program has also been  updated  accordingly. 
- ~ _ _ _  . ~~ . .. 

~~ .- ” ~~ 

l0nly one  differential  equation for the  mass  fraction is solved; remaining 
species are calculated on the basis of stoichiometric considerations. 
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A ”k-€” two-equation turbulence model is  used  (ref.  1). From a dimensional 
analysis, the turbulent viscosity Pt is proportional to the flow density, a 
turbulence velocity  scale (e.g., the square root of the turbulence kinetic 

k), and a turbulence length scale 2 .  In high  Reynolds number flows, 
Z - -  k € with E: being  the turbulence dissipation energy rate;  hence, 
pt = CDPk2/€ where  CD is an empirical  constant and k and E are governed 
by a set of transport equations.  Under  the parabolic flow assumption, these 
transport equations are 

enerT/2, 

a a a 
ax aY a, -(Puk) + “(Pvk) + “(Pwk) = - 

where C1 and C2 are empirical constants associated with the k-E two- 
equation turbulence model. 

The set of simplified 
tive form: 

parabolic flaw equations can be cast in a conserva- 
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where q  is  a general  dependent  variable and rs and Sq are the exchange . 

coefficient  and source term,  respectively,  assoclated with  the  dependent vari- 
able q. When q equals 1, u, v, w, H, f,  k, or E, equation (4) cor- 
responds to the equations for  continuity, the  three  components of momentum, 
energy,  species, turbulence kinetic  energy, or turbulence  dissipation  energy 
rate. Numerical  computation is  based on a  finite-difference formulation of 
equation (4). A "staggered" grid system is used  in  the  cross-stream (y-2) 
plane and variable  grid spacings are  allowed. Figure 1 shows  such a  staggered 
grid system.  In  the  figure, P indicates an arbitrary  node  point;  its  four 
neighboring points are  denoted  by E, W, N, and S for  east,  west,  north, 
and  south.  All variables at  an  arbitrary  node  are  stored  at  the  location P 
except the  transverse  velocity components v  and w: v  is  stored  at the mid- 
point  between W and  P, and  w is stored  at  the  midpoint  between S and P, 
as  shown by the  arrows  in figure 1. Thus, control  volumes at each  node point 
are  different  for  v  and  w  compared  with  those for the  other  dependent  vari- 
ables.  By  taking volume  integrations of equation (4) over  respective  control 
volumes,  a  set of difference  equations can  be  obtained. 

a 
The  volume integrations of the  terms "(puq) and Sq in  equation ( 4 )  

ax 
are  performed by assuming  that the values of q, p, and  u  at  a  node  point  P 
are  constant  over  the  entire control volume.  The  term a/ax contains the 
difference of  values of stations x  and  x + k. The  volume  integrations of 
the  other  two terms in  equation (4) give rise  to  the surface integrals of the 
convective and diffusive  fluxes across  the boundaries of the control volume. 
Proper  representation of these  terms is essential to  the convergence of the 
numerical computation. To provide  numerical  convergence and  accuracy,  a 
"hybrid" scheme is used  (ref. 12)  which is a combination of central and 
upwind  differences. When the integrations of various  terms in  equation ( 4 )  
are  expressed in the  manner  just  described,  the general form of a  difference 
equation at  an  arbitrary  node point P is written in the  following  form: 

qp = %qN + ASqS + A H E  + + B (5) 

where the values of  the q's pertain  to  station x + Ax and the  values of the 
A's and B pertain to station x. The subscripts N, S, E, and W denote 
the  neighboring  north,  south,  east,  and  west nodes (fig.  1). 

The  set of difference  equations (eq. (5)) together  with  other  auxiliary 
relations are  solved by a  so-called SIMPLE (semi-implicit  method  for pressure 

highly  nonlinear, an  economical  noniterative  marching  procedure in  the  stream- 
wise direction is  followed.  The  three  velocity components are  solved  first 
from  their respective  equations (i.e., q = u, v, and w) in  terms of a 
guessed  pressure field. Then a  pressure correction is  obtained  from an equa- 
tion  derived  from  the continuity  equation and  having  a  form  similar to equa- 
tion (5). After  the  pressure  field  and  the  three  velocity components have  been 
corrected,  the difference  equations for H, f,  k, and E are  solved  sequen- 
tially.  Temperature,  density,  and mass fraction  for  each species and  other 
auxiliary  variables are  determined noniteratively. 

- linked  equations) procedure (ref.  1). Although  the  governing equations are 
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In the finite-difference program, the boundary cqnditions are specified by 
the values of ,appropriate fluxes across the boundaries.  For a free-stream or 
symmetry boundary, fluxes are set automatically to zero. . T o  avoid using a large 
number of grid points for calculating large gradients near a solid wall, .the 
boundary conditions are described by the law of the wall. at near-boundary grid 
points (ref.  13). Once the boundary conditions  are properly specified, each of 
the difference equations (eq. (5)) is solved in a-line-by-line  iterative.fash- 
ion  in the cross-stream (y-z) plane by the successive.app1ication  of a standard 
tridiagonal matrix algorithm in the y- and  z-directions. 

The accuracy of the computation is determined by examining the conserva- 
tion of mass flaw in  each cross-stream plane and  the mass residue at each  node 
point; both the mass residue at  each node point and the mass-flow imbalance in 
the entire cross-stream plane are expected to be  small. The accuracy may be 
improved by increasing the number of grid points in the cross-stream plane, 
increasing the number of iterations for solving difference equations, or using 
smaller forward steps in the streamwise direction. 

Finite-Element Computer Program  (COMOC) 

The finite-element computer program (COMOC) considers flow in a constant- 
area rectangular duct with arbitrary boundary conditions  on either  the  four 
duct walls, symmetry planes lying within the duct, or any combination of these 
boundaries.  The flow can be either subsonic or supersonic, with the only 
restriction being that streamwise diffusion is negligible so that a parabolic 
character is maintained. 

Either a mixing-length or a k-E two-equation turbulence model (ref. 2) 
is available in COMOC  to calculate the effective turbulent viscosity.  The k-E 
model requires solving two partial differential equations in addition to the 
governing equations.  Even though the increase in the number of equations is 
small,  the equations for  the turbulence kinetic energy and dissipation energy 
rate  are quite “stiff” for the COMOC integration algorithm. Although an effort 
is currently underway to streamline the integration technique, the present work 
used  the turbulence model based on mixing-length theory (ref. 2) to improve 
computational efficiency for the large domains being  considered. 

The parabolic Navier-Stokes,  energy, and species equations describing the 
flow are given in reference 2. In the notation of the present paper, they are 

Continuity 

a a a 
ax aY aZ “(PU) + “(PV) + “(PW) = 0 

x-momentum 
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y-momen t um 

z-momentum 

Energy 

aH  Pef f Pef f 

1 - NPr,eff,H  Peff a 
“(u2 + v2 + w2) 

NPr,eff,H a2 1 
Pef f 

a 

- -i a Npr,eff,f - NPr,eff,H 
aZ NPr,eff,fNPr,eff,H a aZ 

Pef f x ha ?) (6e) 

Species 

afa) a ( Peff E) ax aY az ay .NPr,  eff, f Npr, eff, e 

a ( Peff ;:) + w -  = -  + -  - + s a  (6f) 

where fa, ha, and Sa are the mass fraction, static enthalpy,  and source term, 
respectively, of  species a (for nonreacting flows, S a  = 0). The effective 
Prandtl number for the mass  fraction Npr,eff,f (the effective Schmidt number) 
is assumed to be the same for all species. Equations (6b) to (6e) do not form a 
completely  parabolic  system because certain cross-derivative shear terms in the 
y-  and z-momentum equations and viscous  dissipation terms in the energy equation 
have  not  been  considered. These terms were  assumed  to be small in the develop- 
ment  of the finite-element program and therefore  were dropped. They are cur- 

” 
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rently  being  added,  however,  in  a  newer  version of the  program.  Equation (6 )  
can  be  expressed  in  general  form  as 

with  generalized  boundary  conditions 

a 
a, 

%(q) = a(l)q(x,f,i) + a(2)K(q)  q(x,y,i)ny + - q(x,y,z)n, - a(3) = 0 (7b) 
- -  J 

where  q is any  dependent  variable, K is  a  generalized  diffusion  coefficient, 
f  and  g  are  functions of the  specified  variables,  and K, a (1) , a (2) , and 
a(3)  are  specifiable  constants.  The  superscript  bar  restrains  y  and z to 
the  boundaries of the  computational  domain. 

A computational  domain is defined  identically  with  the  duct  cross-sectional 
area  at  the  initial  station of the  solution  domain.  This  area  is  then  discre- 
tized, as  shown  in  figure  2,  with  triangular  finite  elements  sized  by  the  user 
with  respect  to  the  initial  rate of change  of  the  variables  q  in  each  element 
(solution  subdomain).  The  triangles  are  chosen  small  for  high  resolution  where 
the  gradients  of  q  are  large;  they  are  chosen  large  for  computational  economy 
where  the  gradients  of  q  are  small.  This  finite-element  scheme  provides  a 
convenient  means  of  transforming  the  partial  differential  equations  describing 
the  system  into  coupled  ordinary  differential  equations  that  can  be  more  readily 
solved.  Within  each  triangular  element,  the  variables  q  are  assumed  to  vary 
in  a  linear  fashion  described  by 

q&(x,y,z) = am + b y  + Cmz (8) 

where qi is the  approximate  solution  to  q  in  the  mth  element  and  a,  b, 
and c define  the  values of q; at the  three  corners of the  triangle. For 
subsequent  use,  equation (8) is  more  conveniently  expressed  in  vector  form  as 

and superscript T indicates  the  transpose of the  vector. 
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To determine the Q's at each  node, which are  the solutions sought, the 
approximate solutions q* are substituted into the differential equations 
(eq. (7a)) constrained by boundary conditions (eq. (7b)). If the values of 
L(q*)  and  g(q*), referred to as residuals, can be reduced collectively to 
zero over the solution subdomain, the approximate solution then approaches the 
exact solution of equation (7a), as the element size is reduced to  zero in the 
limit . 

Values of the residuals are best minimized by integrating over the entire 
element subdomain with weight W and requiring that the result vanish; that 
is, 

This procedure is commonly referred to as the method of weighted residuals. 
Here, % denotes the element subdomain, 8% the subdomain boundary, aR 
the computational domain boundary, and n the intersection of these two bound- 
ar  ies. The  second integration is per formed only when an element lies on the 
boundaries of the duct cross section being  computed. Weighting allows the 
functional dependence of q* to be felt throughout the integral domain. The 
unknown algebraic multiplier X has been included (ref. 2) for use  later in 
simplifying the equation system. 

In order to proceed with equation (lo), appropriate weights on L and R 
must be  defined. The Galerkin procedure, applied here, chooses the weights to 
be identical with $ (eq. (9b)). Experience has shown that this procedure 
yields the most appropriate weighting to equation (10) consistent with the  sys- 
tem being  solved. Equation (10) then becomes 

J {$(Yra) L(q;) {$(y,z)) &(qk) dS = (0) (11) 
R, 

Equation (11) describes the variation of the dependent variables q over 
each finite element within the computational domain. To describe q over 
the entire domain, equation (11) with appropriate simplifying modifications 
(refs. 2, 7, and 14) must be  summed (symbol U) over  all the finite elements. 
The details of this development are  rather involved and are presented in the 
appendix; the result is 



Equation (12) is the basis of the solution  algorithm  for a l l  dependent variables 
of the C O ~  finite-element computer  program. It is applied  directly  to  the 
three momentum equations,  the energy equation, and the species  equation. A sys- 
tem of simultaneous first-order  ordinary  differential  equations i n  the  x 
(streamwise) coordinate  direction then results  for  the dependent variables. 
These equations  are solved a t  each streamwise station using a predictor- 
corrector numerical integration scheme (ref. 7) .  The value of  each dependent 
variable is predicted a t  the first downstream station  (first   step) using a s i m -  
ple Euler scheme based on the variable's streamwise derivative  at   the  init ial  
station.  Predictions  at subsequent steps  are obtained from the  predictor  for- 
mula. A t  each step,  the  predictions  are then corrected by the more accurate 
corrector formula. The  scheme is absolutely  stable and has an error of the 
order of the  square of the step  size i n  the streamwise direction. The step 
size is adjusted wi th  respect  to a maximum relative  truncation  error and is 
continually  increased up to this limit while downstream stepping  to reduce the 
required computer  time. When the  error limit is exceeded, the preceding step 
size  to a new station is reduced and the  values of the dependent variables  at 
the new station  are  recalculated. 

As the  solution marches  downstream, continuity is enforced by insuring 
that mass is conserved a t  each streamwise station. Conservation is guaranteed 
by correcting  the streamwise pressure  gradient a t  each station, so that  the 
computational cross-sectional  area of the flow A, matches as  closely  as pos- 
sible the actual  cross-sectional  area A of the duct .  T h i s  computational 
cross-sectional  area is directly  related  to the total  mass flow rate i by 

where P, and un are  local values of density and streamwise velocity  at each 
of the N nodes  forming the  finite-element  grid. The change i n  computational 
area  necessary to match the actual area is then, 

where Ax is the step  size. The derivative d&/dx is directly  related  to 
the streamwise pressure  gradient dp/dx by (ref. 13) 
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where Tav is the  average wall shear  over  the step, Tav is the  area-averaged 
temperature, Mav is the  area-averaged Mach number over  the 'cross sec t ion ,  and 
Y is the  ratio of spec i f i c   hea t s .  COMOC c u r r e n t l y   c o n s i d e r s   o n l y   t h i s  stream- 
wise var ia t ion   o f  pressure. However, t he   capab i l i t y  to ca lcu la te   bo th   t rans-  
verse  pressure fields is now being  implemented i n   t h e  program. 

Specif iable   boundary  condi t ions  in  COMOC are of   th ree  basic types. The 
symmetry (vanishing  gradient)   boundary  condition, where the normal  derivative 
of  any  dependent  variable  vanishes, is the  defaul t   boundary  condi t ion  in  COMOC 
(see appendix).   Alternately,   the  value  of  dependent  variables  can be held a t  
its in i t i a l   va lue   a long   any  boundary.  Finally, a f i n i t e   v a l u e   o f  the  normal 
der iva t ive   o f  a dependent  variable  along  any  boundary  can be specif ied.   This  
"derivative  boundary  condition" is use fu l   i n   t u rbu len t   f l ows  and w i l l  be 
described more f u l l y  later. 

EXPERIMENTAL TEST CASE 

Apparatus and Test Conditions 

A three-dimensional  turbulent  mixing  experiment  has  been  conducted to pro- 
vide detailed data for  comparison  of the t w o  computer programs. The experiment 
involves t h e  mixing of helium jets with a supersonic   a i r s t ream  in  a rectangular  
combustor duc t .  A sketch of the  in j ec to r  s t r u t  and combustor d u c t  is presented 
i n   f i g u r e  3. The combustor d u c t  has a cons tan t  cross section  0.0381 m by 
0.17 m. The f i rs t  sec t ion  of the  d u c t  conta ins  the i n j e c t i o n  s t r u t ,  which is 
centered   in  t h e  shorter  dimension and spans the  longer  dimension  of  the  duct 
cross sect ion.  The combustor d u c t  i nco rpora t e s   h inge   j o in t s   a t   t he  0.309-m 
s t a t i o n  for making adjustments to the combustor geometry. Flow to t h e  combus- 
tor d u c t  is provided by a rectangular  Mach 2.99 nozzle a t  a total  temperature 
of 294 K and a total  pressure of  1.6 MPa (see t a b l e  I ) .  

Details o f   t he   i n j ec to r  s t r u t  a r e   p re sen ted   i n   f i gu re  4. Previous tests 
of t h i s  s t r u t ,  reported  in   reference  15,  were performed w i t h  an   a r ea   r a t io  of 2 
over the a f t  0.479-m sec t ion  of the  combustor. This s t r u t  was designed for 
combustion tests, and therefore ,   the   leading  edge has provis ions  for water 
cooling. The s t r u t  cons is t s   o f  a 60  half-angle wedge with a maximum thickness  
of 0.01 m and a 0.0016-m-radius leading  edge. The a f t  body has   constant   thick-  
ness and a blunt  base.  Five  equally  spaced f u e l  i n j e c t o r s  located on t h e  base 
d iv ide   t he   f l aw   in to   f i ve   nea r ly  square (0.0340 m by 0.0381 m) regions.  Four 
o f   t he   i n j ec to r s  are l o o  half-angle   conical   nozzles  which o p e r a t e   s l i g h t l y  
overexpanded. The o ther   in jec tor   has  two sonic  je ts  directed toward each o ther  
with a combined je t  c ross -sec t iona l  area equal to the  throat area of the  other 
jets. The i n j e c t a n t  is supplied through  the  passages labeled "Helium" i n  
f i g u r e  4. As listed i n  table I, helium is in j ec t ed  a t  a total  temperature of 
294 K and a to ta l  pressure  of  3.27 or 3.79 MPa, which  produce a b u l k  helium-to- 
air  mass-flaw ratio of  0.024 or 0.027, respect ively.  
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Instrumentation 

Measurements  included  total  injectant  flow  rate,  total  pressure  and  tem- 
perature  of  air  and  injectant,  combustor  wall  pressures,  and  instream  surveys 
of  static  pressure,  pitot  pressure,  and  gas  composition.  Comparisons  between 
the  injectant  flow  rate  measured  by  a  venturi  in  the  helium  supply  line  and  the 
flow  rate  calculated  by  one-dimensional  isentropic  compressible  flow  relations 
at  the  injector  throat  show  that  the  bulk  discharge  coefficient  for  the  five 
jets  was  approximately 0.81. Combustor  wall  pressures  were  measured  along  the 
entire  length  of  the  upper  wall,  primarily  on  the  wall  center  line.  Instream 
flow  surveys  of  pitot  pressure  and  gas  composition  were  made  with  a  13-probe 
rake  which  incorporated  internal  expansion  pitot  probes,  as  illustrated  in  fig- 
ure 5(a).  The  probes  were  mounted  at  a  center-to-center  spacing  of  0.00635  m. 
The  pitot  probe  utilizes  an  internal  expansion  design  to  aid  in  collecting 
accurate  gas  samples by  reducing or eliminating  tip  spillage.  All  13  pitot 
pressures  were  recorded  simultaneously;  then  13  gas  sample  bottles  were  filled. 
These  bottles  were  analyzed  on  a  process  gas  chromatograph  between  survey  runs. 
Instream  static  pressure  was  obtained  with  a  probe  rake  incorporating  the  static 
probe  tips  illustrated  in  figure 5(b). This  static  probe  tip is less  suscepti- 
ble  to  errors  from  misalignment  with  the  flow  direction  than  conventional  static 
probes  (ref. 16). Static  tips  were  located  on  the  rake  at  a  center-to-center 
spacing  of  0.0127  m  (double  the  pitot  spacing)  to  eliminate  flow  interference 
between  the  tips.  Thus,  two  passes  were  required  to  complete  static  pressure 
flow  mapping  at  each  survey  station. 

The  metered  air  and  helium  mass  flow  rates  are  estimated  to  have  an  accu- 
racy  within +2 percent.  Accuracies  of  pitot  pressure,  static  pressure,  and  gas 
concentration  are  estimated  to  be  within  +2  percent,  +4  percent,  and  +1  percent, 
respectively.  Another  source  of  error  in  the  data  acquisition  is  repeatability 
of  the  test  conditions  for  different  surveys.  The  air  and  helium  mass  flows 
varied  by  about +5 percent  from  test  to  test, so the  measured  pitot  and  static 
pressures  were  adjusted  by  the  ratio  of  the  actual  air  total  pressure  to  mean 
air  total  pressure. 

Experimental  Results 

Flow-field  surveys  were  made  at  two  streamwise  stations,  x = 0.0421  m 
and x = 0.7369  m  downstream  from  the  base  of  the  injection  strut.  At  the 
upstream  station  (x = 0.0421  m),  the  surveys  were  concentrated  in  the  region  of 
the  flow  occupied  by  the  injectant.  At  the  downstream  station (x = 0.7369  m), 
the  entire  flow  field  was  surveyed.  Measured  pitot  and  static  pressures  and 
gas  concentrations  were  reduced  to  generate  tabulated  data,  flow-field  profiles, 
and  contour  plots  of  various  flow  properties. 

Helium  mass  fraction  contours  for  the  entire  duct  cross  section  at  the 
downstream  station  (x = 0.7369  m)  are  presented  in  figure 6. Corresponding  to 
the  five  injectors  are  five  almost  equally  spaced  mixing  regions  with  distinct 
boundaries.  Dashed  vertical  lines,  located  midway  between  the  projected  loca- 
tions  of  the  jet  center  lines,  emphasize  the  mixing  regions.  Integrations  of 
air  and  helium  mass  flows  in  each  of  the  five  mixing  regions  show  that  the  mass 
flows  are  almost  the  same  in  each  region,  although at the  downstream  station  the 
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jets have already merged with their neighboring jets. As shown in figure 6, 
the flaw field downstream of the crossed injector (second from left) is more 
uniform than those of the  other parallel injectors. All four  parallel-injection 
mixing regions are quite similar with the exception of slight shifts from the 
projected injection location (solid symbols in  fig.  6). The center  jet region 
was surveyed more extensively than the other .jet  regions.  Therefore,  the ten- 
ter jet was chosen as a typical flow field to  be computed by the two computer 
programs. 

The reduced survey data in the center jet region for the streamwise veloc- 
ity, static pressure, temperature, and helium mass fraction are tabulated in 
tables I1  and I11 for the upstream (x = 0.0421 m) and  the downstream 
(x = 0.7369 m) stations,  respectively. These data have been adjusted to the 
bulk flow pressures listed in table I and were reduced by assuming constant 
total temperature. In the following discussions, detailed surveys of the ten- 
ter mixing region are  presented. 

Figure 7 illustrates the center jet mixing region relative to the upstream 
projection of the strut and center fuel injector.  The top and bottom boundaries 
are formed by the combustor wall, and the side boundaries by the center planes 
between adjacent jets. Vertical locations of the probe tips and horizontal 
locations of the  rake at the upstream survey station (x = 0.0421 m) are repre- 
sented by the tick marks on the respective boundaries.  Thus,  the intersections 
of horizontal and vertical lines through the tick marks represent the locations 
of survey points. 

Figures 8(a) and 8(b) present the helium mass fraction contours at the 
upstream and downstream survey stations, respectively.  At  the upstream survey 
station,  the  five individual jets are still separate, each having  spread  over 
only about half  of  the mixing-region width. At  the downstream station, the 
flow is nearly stratified in the vertical direction because of merging between 
adjacent jets. The maximum helium mass fraction measured at the upstream sta- 
tion is  0.36;  at the downstream station, it is 0.035. 

Helium mass flow rate contours are very similar in appearance to the mass 
fraction contours of figure 8 and are  not  presented. Helium mass flow rate 
contours were numerically integrated and the result was nondimensionalized by 
the metered mass flow rate from one jet. The result, presented in figure 8 by 
the symbol ke, shows a 16-  and 10-percent deficiency in helium  mass-flow 
measurement at the upstream and downstream stations,  respectively. This is 
consistent with previous cold mixing studies where surveys taken close to  the 
jet in regions of sharp concentration and velocity gradients exhibit significant 
injectant mass-flaw  deficiencies. A 12-percent deficiency in  air  mass-flow 
measurement was observed by integrations of the air mass flow rate contours. 

Velocity contours are presented in figures 9(a) and 9(b) at the upstream 
and downstream survey stations,  respectively.  The helium jet exit velocity is 
1539 m/sec,  and  the  air velocity ahead of the strut is 617 m/sec. At  the up- 
stream station surveyed, the jet has a much higher velocity than the surround- 
ing  air. The  peak velocity in  the jet flow is about 1100 m/sec; outside the 
central jet region, the velocity is  in the range of 366 to 488 m/sec. This air 
velocity deficiency from 617 m/sec ahead of the strut is indicative of the 
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pressure loss caused by strut-induced shock waves. At the downstream station, 
the veaocity is more uniform and has decayed as a result of viscous losses in 
the duct. The velocity ranges from 335 m/sec  near the wall to 457 m/sec at the 
combustor center line and appears similar to turbulent-boundary-layer-type flow. 

Static pressure contours are presented in figure 10 for the two survey 
stations.  At  the upstream station (fig. 10 (a)), pressure in the region of 
the injectant is  lower  than  in the surrounding flow. The pressure increases 
slightly toward the wall, as expected, because of the wave structure produced 
by the strut. At the downstream station (fig. 10 (b)) , the static pressure is 
more random but at a  higher value because of viscous losses in the duct. 

Static temperature contours, reduced from the survey data by assuming con- 
stant total temperature,  are presented in figure 11 for  the two survey stations. 
Because the total temperature is assumed to be constant, these surveys are sim- 
ilar to the velocity contours. At the upstream station (fig.  ll(a)), the mini- 
mum static temperature at the center of the helium jet is about 139 K. The 
maximum static temperature adjacent to the wall is about 256 K. At the down- 
stream station (fig. ll(b)), the minimum and maximum values are about 194 K and 
244 K. 

NUMERICAL COMPUTAT.1ONS 

In this section,  the finite-difference and finite-element computer programs 
are applied to  the helium mixing experiment described in the previous section. 
Because of the symmetric nature of the flow field downstream of each jet, only 
the flow field downstream of the central jet is considered in the present calcu- 
lation.  In  order to take full advantage of the maximum storage in the computer 
programs, the finite-difference program computed only half of the central jet 
(region ABCDEFA in fig. 12),  and  the finite-element program computed one-quarter 
of the central jet (region ABCFA in fig.  12). The approximate symmetry of the 
central jet flaw field allowed this reduction in the computational domains. 
Since for comparison of the  two programs the two computations must be  based on 
the same set of initial conditions, the acquisition of the initial conditions 
will be described first.  Then,  the application of two programs to the problem 
with respect to their grid arrangements, initial and boundary conditions, ini- 
tial estimates of turbulence kinetic energy and dissipation rate,  and computer 
time and storage required is described. Finally, computational results of both 
computer programs are presented for comparison with each  other and with the 
experimental data. The essential differences between the two computations from 
SHIP and COMOC are presented in table IV. 

Initial Data 

As described in the section, "Experimental Test  Case," the measurements 
of static and pitot pressures and helium mass fraction were made at two stream- 
wise stations. From these measurements, the streamwise velocity, temperature, 
pressure, air  and helium mass fractions, and density of the mixture were 
deduced.  In  the center jet  region,  however, there are only 9 x 7 points of 
measurement, too coarse to represent the details of the initial conditions for 
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the  computations.  Therefore,  the  experimental data (streamwise ve loc i ty ,  tem- 
perature, pressure,  and helium mass f r a c t i o n )  were interpolated  according to 
the  desired grid  arrangement  in the i n i t i a l  cross-stream plane by using  cubic- 
s p l i n e   i n t e r p o l a t i o n .   I n i t i a l  profiles of streamwise velocity,   temperature,  
pressure, and helium mass f r a c t i o n  from the center   plane (z  = 0)  to the   duc t  
wall ( z  = 0.01905 m) a t  severa l   s ta t ions   a long   the   y -ax is  are shown i n   f i g -  
ure  13. The symbols are the  experimental  data and the i i n e s   a r e   t h e   p r o f i l e s  
interpolated  from  these data. Note t h a t  a t  t h e   i n i t i a l   s t a t i o n ,   t h e r e  were 
shocks;  however,  because  of  the limited measured  data,  the  positions  and  inten- 
sities of  these  shocks  cannot be easily  determined.  Therefore,  the i n i t i a l  
p rof i les   o f   the   in te rpola ted   f law  var iab les  show smooth var ia t ions  over  the  
e n t i r e  cross-stream plane. It is be l i eved   t ha t   i n  the  parabolic f low  f ie ld ,  
the  error due to such  approximations does not  produce  significant  downstream 
e f fec t s   s ince   any   d i scon t inu i t i e s  w i l l  be d i f fused  (smoothed o u t )  wi th in  a 
shor t   d i s t ance  downstream. 

Finite-Dif  f  erence  Program 

In   t he   f i n i t e -d i f f e rence  computer program (SHIP), t h e   i n i t i a l   c o n d i t i o n s  
required are the three ve loc i ty  components, temperature, pressure,  and mass 
f r a c t i o n  of a l l  species .  From these flow va r i ab le s ,  the values   of   densi ty ,  
to ta l  enthalpy, and turbulence  kinet ic   energy and d i s s ipa t ion   r a t e   can  be 
e i the r   ca l cu la t ed  or estimated. In  the  present  computation,  the t w o  l a t e r a l  
v e l o c i t y  components were taken to be i n i t i a l l y   z e r o ,  because they were not mea- 
sured and were assumed to be small compared with  the streamwise v e l o c i t y  m m -  
ponent. The helium mass flaw and the  total  mass flaw computed  from t h e   i n i t i a l  
profiles are 0.01193  kg/sec  and  0.5975  kg/sec,  respectively,  whereas  they were 
0.01425  kg/sec  and  0.5960  kg/sec i n  the experiment. 

The i n i t i a l   t u r b u l e n c e   k i n e t i c   e n e r g y  and d i s s ipa t ion  rate also were not 
measured;  hence,  they mus t  be estimated. One method, suggested  in  reference  17,  
is to use an estimated shea r - s t r e s s   p ro f i l e .  For a  two-dimensional  subsonic 
turbulent  boundary  layer or turbulent   mixing  layer   of  homogeneous medium, it 
was found ( r e f .  11) t h a t  an estimate based on the Prandtl  mixing-length  hypoth- 
esis is adequate. For a turbulen t   mix ing   layer   o f   d i f fe ren t  mediums, however, 
the  mixing  length seems to depend  on  the  var ia t ion  of   densi ty   ( ref .  11). Since 
the re  are no rigorous  conventional  methods  available to determine  the  turbulence 
k ine t ic   energy  and d i s s i p a t i o n  rate from the  local f law  var iab les   in  a three- 
dimensional  f law,  the  following estimate was used i n   t h e   p r e s e n t   f i n i t e -  
difference  computation. 

It was assumed tha t   the   tu rbulence   k ine t ic   energy  a t  t h e   i n i t i a l  sta- 
t i o n  was composed of t w o  parts, one  due to the  background value and the  o ther  
due to the  shear  stress, as suggested  in  reference  17  for  two-dimensional 
flaws. The background  turbulence  kinetic  energy ko is defined as a f rac-  
t ion  of   the mean f law  k ine t ic   energy;   tha t  is, in   the  present   computat ion,  
ko = (5.56 x lO-5)u& with uav being  the  average  veloci ty   of   the  airstream. 
The turbulence  kinet ic   energy due to the shear stress depends  on  the local 
maximum ve loc i ty   g rad ien t  au/as  (au/as is the  greater  value  of  au/ay  and 
au/az) and a mixing  length 2,. For flaw  near  the  duct wall, the  mixing  length 
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in   the  convent ional   turbulent   boundary layer was used; near the  jet ,  the  mixing 
length  in   the  axisymmetr ic   mixing  layer  was assumed.  Thus, 

In   the  present   coordinate   system  ( f ig .   12)  , for flow near   the  duct  wall, 
Z 2 0.01905 - 0.096d0.435  with  6b = 0.007 m being  the wall boundary-layer 
t h i ckness .   In   t h i s   r eg ion ,  2, is (ref.  11) 

Outs ide   o f   th i s   reg ion  (i.e., z < 0.01905 - O.O9tSb/o.435), 

2, = 0.116, 

with 6m = 0.005 m being  the  mixing-layer  thickness.   Similarly,   the  turbulence 
d i s s i p a t i o n  rate and t h e   t u r b u l e n t   v i s c o s i t y  were assumed to be 

and 

No-flux  boundary  conditions were s p e c i f i e d  a t  the   t h ree  symmetric bound- 
aries: on the duc t  wall, t h e   v e l o c i t y  was zero, the  temperature was cons tan t ,  
and h e a t   t r a n s f e r  was allowed. 

In  the  f ini te-difference  computat ion,   nonuniform  gr id   spacings were 
chosen; 11 x 30 g r i d   p o i n t s  were used i n   t h e  y-z plane. The computation was 
performed from t h e   i n i t i a l   s t a t i o n   ( x  = 0.0421 m downstream  from the  s t r u t )  
to a downstream s t a t i o n   ( x  = 0.7369 m) wi th   the empirical cons t an t s  C 1  = 1.44, 
C2 = 1.92, CD = 0.09, laminar   Prandt l  number NPrr j?, = 0.7,  and tu rbu len t  
Prandt l  numbers N P ~ , ~ , ~  = 1.0 f o r  q = u,v,w, k, Npr, t, E: = 1.3, 
Npr-t, H = 0.9,  and  Npr, t r  f = 0.7. A to ta l  690 var iable-s ized streamwise 
forward steps were taken. Total computer time was 261 sec on the   Cont ro l  Data 
CYBER 175  computer  system: t h e  total computer s to rage  used was 774008 words. 
The accuracy of the  computation was checked  by the  conservat ion of mass and 
mass flaw. The mass source   in   each   cont ro l  volume was k e p t  as small as 
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2 x 10-9 percent of the total mass flaw, while the total mass-flow imbalance 
across the cross-stream plane at each station was kept under 2 x 10’’ percent 
of the total mass flow. Therefore, the total mass flow  of the helium and  air 
was virtually unchanged along the entire length of the duct during the 
computation. 

Finite-Element Program 

The finite-element program (COMOC), has also been applied to the helium- 
air mixing experiment. Because of computer storage limitations and long run 
times when using COMOC, only one-quarter of the duct cross-sectional area was 
considered. Results for the remaining three quadrants associated with the jet 
were  inferred by symmetry. The additional symmetry boundary condition was 
approximated by the initial data. There was little change in any of the  depen- 
dent variables moving transversely between y = 0 and y = -0.00254 m. 

Initial data requirements for COMOC include the three velocity components, 
temperature, and species mass fraction profiles, and an initial estimate of 
streamwise pressures. The streamwise velocity component, temperature, and mass 
fractions were identical with those input into  the finite-difference code. 
Small values of the v and w velocity components on the  order of 0.1 percent 
of the streamwise velocity were assumed, consistent with continuity, to provide 
a gradient source on the y-  and  z-momentum equations as no transverse or lateral 
pressure gradient sources existed. (In the finite-difference program, such 
sources existed.) No effect was observed on  the final downstream results from 
this assumption.  The streamwise pressure gradient was initially assumed to be 
zero, but as discussed previously, the pressure algorithm rapidly generated a 
gradient to match computational and actual cross-sectional areas. 

Turbulence closure was developed according to mixing-length theory.  In 
this case,  the turbulent viscosity pt was given ty (ref. 21, 

where, 

2, = Ck(0.01905 - z)D 

where ck = 0.4, x = 0.09, bb is the  boundary-layer thickness on the wall, 
and D is the Van Driest damping factor given by 

D = 1 - exp (2) 
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where 

- G(O.01905 - Z) 
z =  

v 

and T~ is  the skin friction on the  wall, pw the wall density,  and V the 
kinematic viscosity. The effective Prandtl  numbers for enthalpy and mass 
diffusion were, respectively, 1.0 and 0.4. 

Boundary conditions for the three symmetry boundaries were chosen to 
require that the normal gradient of each of the dependent variables across 
each of these boundaries vanish. Along the wall boundary, a gradient boundary 
condition was applied to the streamwise velocity component just off the wall 
at the outer edge of the sublayer boundary. This condition required that the 
normal derivative of u be equal at the sublayer boundary to the ratio  of the 
local turbulent shear stress to local turbulent viscosity. Turbulent shear 
stress was found from a modified relation developed by Patankar and Spalding 
(ref. 13) through the application of  wall functions within the sublayer.  Thus, 
the "gradient boundary condition" simply inverted the basic definition of wall 
shear and solved for the velocity gradient given shear and  viscosity. Although 
the program can carry the computation directly to the  wall, a large number of 
elements were required to compute the large normal gradients encountered in the 
sublayer. Since the flow field  is conveniently predicted in the sublayer by 
empirical means, such a computation to the wall  was unjustified. The v and 
w velocity components were required to satisfy a no-slip condition at the wall; 
that is, they vanish "near" the wall. The normal gradients of both enthalpy 
and helium mass fraction were required to vanish at the wall, consistent with 
a no-flux condition there. 

The finite-element program also uses a nonuniform grid to discretize the 
cross-stream (y-z)  plane. This plane is spanned by a 6 x 16 node mesh and 150 
triangular finite elements. To march the solution from the initial station 
(x = 0.0421 m) to the final downstream station (x = 0.7369 m) required 1326 sec 
of computer time on the Control Data CYBER 175 computer system with a storage 
of 2650008 words. 

COMPARISON OF NUMERICAL CALCULATIONS AND EXPERIMENTAL DATA 

Downstream computations (x = 0.7369 m) from both computer programs are 
compared with the experimental data in figure 14. Results for streamwise 
velocity, temperature, and helium mass fraction are plotted from the center 
plane (z = 0) to the duct wall (z = 0.01905 m) at five stations along the 
y-axis. Because the finite-element program calculated only one-quarter of the 
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center jet  region, comparisons for this program are  made only at three stations 
in  the positive y-direction (figs. 14 (a), 14 (b),  and  14(c)). 

Finite-Difference Program Results 

Comparisons of the finite-difference (SHIP) results with experimental data 
(fig. 14) generally show excellent agreement. The computed streamwise velocity 
and static temperature give excellent quantitative and qualitative agreement 
with the experimental data at all five stations along  the y-axis. The maximum 
differences between computational and experimental data are about 6.3 percent 
for  the velocity and 6 percent for the temperature. These maximum differences 
seem to occur at  the measurement points near  the duct wall. Several explana- 
tions for this discrepancy are  possible. The experimentally measured values 
near  the duct wall may be perturbed by the end effects of the duct which may 
propagate upstream through the subsonic wall boundary layer. Also, data reduc- 
tion  assumed constant total temperature, and this assumption may introduce 
small errors. On the other hand,  in  the finite-difference computation, the 
deficiency near  the wall may  be  due to both  the approximate wall boundary con- 
dition and the coarse grid spacings selected near  the  wall. Despite these 
approximations and uncertainties, the comparisons near  the wall are quite 
satisfactory. 

The computed helium mass concentrations are also in good agreement with 
the experimental data except at the  two outermost stations (y = k0.0127 m) . 
The disagreements at these stations may be attributed to several sources. 
First, the downstream measured helium mass flow is experimentally 11 percent 
higher  than  the upstream measured helium mass flow; however,  the computed 
helium mass flow is conserved relative to  the initial (upstream station) mass- 
flow data. Second, compared with the experimental data,  the mixing of helium 
with air  in the  y-direction is relatively slow for the computation; this may 
be  due  to an improper estimate of the initial turbulence kinetic energy,  dis- 
sipation rate,  and (three-dimensional) mixing length.  In  addition, the flow 
field of the  center  jet mixing region was assumed  to be independent of all 
other jets in the  computation. Practically, there are interactions between two 
neighboring jet regions, particularly between the central jet  and the cross-flow 
jet. These interactions may have caused nonsymmetric distribution of helium 
mass concentration at the stations in  the positive and negative y-directions. 
Hence,  the helium may be diffused in  and out from the boundaries with neighbor- 
ing  regions.  MDreover, the absolute values of the helium mass fraction are 
actually quite small, on the order of less than 0.03. The accuracies of the 
measurement and the data reduction may limit such a quantitative comparison. 

Finite-Element Program Results 

Comparisons of the finite-element results with experimental data 
(figs. 14 (a) , 14(b) , and  14(c)) also show generally good  agreement. The static 
temperatures are in excellent agreement with the experiment, having a maximum 
difference of only 6.0 percent. The computed streamwise velocities also agree 
well with the experimental measurements, differing by a maximum of 8.6 percent. 
Values of the computed helium mass fraction are in good agreement with the 
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experimental  data  at  the  first  two  lateral  stations  (figs. 14 (a)  and 14 (b)) , 
but  agreement  is poor at  the  outermost  station  (fig. 14 (c) 1 .  In  addition  to 
the  possible  sources  of  disagreement  discussed  for  the  finite-difference 
results,  the  absence  in  the  finite-element  program of  a  transverse  pressure 
gradient  to  convect  helium  away  from  the  jet  center  line  may  be  the  major  prob- 
lem.  This  deficiency  would  explain  the  need of  a  Prandtl  number  for  mass  dif- 
fusion  (Schmidt  number)  which is lower  than  normally  observed.  Additionally, 
a  coarse  element  discretization  was  necessary  to  maintain  reasonable  computer 
time  requirements.  As  a  result,  the  mass  flow  rates of helium  and  air  were  not 
conserved  along  the  duct,  and  an  overall  computational  loss  in  mass  flow  rate 
of 15  percent  was  detected. 

Comparison  of  Program  Results 

In  view of such  a  complicated  three-dimensional  flow  field,  the  predictions 
from  both  computer  programs  are  considered  reasonably  good  in  comparison  with 
the  experimental  results.  Comparisons  between  the  two  numerical  computations, 
however,  indicate  that  the  finite-difference  program  provides  better  overall 
agreement  with  experimental  data  and  requires  less  computer  time  than  the 
finite-element  program. 

The  superior  computational  accuracy  and  run  time of the  finite-difference 
program  are  due  primarily  to  the  efficient  implicit  integrator  used  to  solve 
the  governing  equations  describing  the  flow  field.  This  feature  allows  a  very 
fine  nodal  discretization  of  the  computational  domain,  permitting  an  accurate 
resolution  of  gradients  within  the  flow  field  and  requiring  reasonable  computer 
run  times.  The  finite-element  code  currently  uses  a  less  efficient  explicit 
predictor-corrector  scheme.  Recent  improvement of the  integration  algorithm  in 

in  integration  speed  and  run  time.  Better  integration  efficiency  also  allows 
the  effective  use of the  two-equation  turbulence  model  by  the  finite-difference 
program.  The  finite-element  program  is  limited  by  its  integrator  to  an  alge- 
braic  turbulence  model.  Finally,  the  finite-difference  program  calculates  a 
three-dimensional  pressure  field,  whereas  the  finite-element  program  calculates 
only  an  axial  pressure  field.  Both  transverse  pressure  gradients  are  important, 
however,  in  mixing  flows.  Therefore,  a  three-dimensional  pressure  algorithm is 
currently  being  added  to  the  finite-element  program. 

i the  finite-element  program  has,  however,  resulted  in  a  significant  improvement 

Comparison  of  Computational  and  Experimental  Mixing  Efficiencies 

In  figure 15, the  mixing  efficiencies  calculated  along  the  duct  by  the 
two  computer  programs  are  presented.  The  mixing  efficiencies  at  the  upstream 
(x = 0.0421 m)  and  the  downstream  (x = 0.7369 m)  measurement  stations  were  also 
calculated  directly  from  the  experimental  surveys  and  are  plotted  for  compari- 
son.  Mixing  efficiency is a  measure of the  completeness  of  mixing  between  the 
injectant  and  the  surrounding  airstream  and is defined  at  any  streamwise  sta- 
tion as the  fraction of  fuel  (injectant)  that  would  react  if  complete  reaction 
occurred  without  further  mixing  (ref.  15). To produce  a  consistent  definition 
in  the  present  calculation of mixing  efficiencies,  the  helium  mixed  with  the 
airstream  was  treated  as  if  it  were  hydrogen,  mixed  and  reacted  with  the  same 
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airstream.  The  change  in  mixing  efficiency  along  the duct is  very  useful  for 
practical  combustor  design  and  helps  to  determine  the  combustor  size  required 
to  achieve  desired  combustion  performance.  In  experiments,  the  mixing  effi- 
ciency  can  only  be  obtained  at  relatively  few  stations  where  the  flow  fields 
are  surveyed.  In  numerical  computations,  however,  the  mixing  efficiency  can be 
conveniently  calculated  at  each  station  along  the  duct.  Such  calculations  are 
extremely  valuable  to  supplement  the  traditional  approach  based  purely  on 
experimentation. 

In  the  comparison of the  computational  and  experimental  mixing  efficien- 
cies  (fig.  15),  results  again  generally  agree.  However,  the  computational  mix- 
ing  efficiencies  are  higher  than  the  experimental  value  at  the  initial  station 
(x = 0.0421  m). These  differences  are  attributable  to  both  physical  and  numer- 
ical  reasons.  The  experimental  mixing  efficiency  was  integrated  over  the  entire 
region  around  the  central  jet  by  using 819 integration  points,  while  the  finite- 
difference  result  was  integrated  over  the  upper  half  of  the  region  by  using 
330  nodes  and  the  finite-element  result  used 96 nodes  (150  finite  elements)  over 
one-quarter  of  the  region.  Because  of  strong  gradients  of  helium  mass  fraction 
and  velocity  at  the  initial  station,  the  use  of  a  different  number  of  integra- 
tion  points  naturally  results  in  different  calculated  mixing  efficiencies. 
Furthermore,  the  flow  field  in  the  central  jet  region is not  exactly  symmetric 
with  respect  to  the  symmetry  boundaries  assumed  in  the  computations;  hence, 
mixing  efficiencies  calculated  in  different  regions  will  also  be  different.  At 
the  downstream  station  (x = 0.7369  m),  the  mixing  efficiencies  of  both  computa- 
tions  are  in  good  agreement  with  the  calculation  made  directly  from  the  experi- 
mental  survey  data. 

CONCLUDING REMARKS 

Finite-difference  and  finite-element  computer  programs  have  been  applied 
to  a  three-dimensional  nonreacting  turbulent  mixing  experiment.  Relative  accu- 
racies  and  efficiencies  of  the  programs  have  been  assessed  by  comparing  their 
results  with  the  experiment  and  also  by  comparing  the  results  of  the  programs 
themselves. 

In  general,  both  computer  programs  predict  the  experimental  results  and 
data  trends  reasonably  well.  Their  predictions  were  based on the  same  set  of 
initial  experimental  data  for  streamwise  velocity,  temperature,  pressure,  and 
concentration,  but  the  programs  used  different  turbulence  models,  governing 
equations,  and  pressure  algorithms.  Compared  with  experimental  data  at  a down- 
stream  station,  the  predictions  by  the  finite-difference  program  are  generally 
more  accurate  than  those  of  the  finite-element  program.  Additionally,  the 
finite-difference  program  is  more  efficient  in  both  computer  storage  and  com- 
puting  time  than  the  finite-element  program.  The  superior  accuracy  of  the 
finite-difference  program is due  primarily  to  its  efficient  integrator,  which 
allows  a  very  fine  discretization of the  flow  field  and  the  application  of  a 
more  appropriate  turbulence  closure  model.  Additionally,  the  finite-difference 
program  calculates  transverse  pressure  gradients  in  the  duct,  whereas  the 
finite-element  program is limited  to  a  one-dimensional  streamwise  pressure 
field.  Both  limitations  degrade  the  accuracy  of  the  finite-element  program, 
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and work is currently underway to upgrade both the integrator and the pressure 
algorithm. 

At present, the finite-difference program is preferred for numerical com- 
bustor analysis and design. Development of the finite-element program has, 
however,  been underway for significantly  less time. Developed to  their full 
potential,  both computer programs should provide  powerful analysis tools for 
scramjet engine design. 

Langley Research Center 
National  Aeronautics and Space Administration 
Hampton, VA 23665 
February 16, 1978 
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APPENDIX 

ASSEMBLED  SOLUTION  AIXORITHM 

In  this  appendix,  the  assembled  finite-element  solution  algorithm  is 
developed. To simplify this development,  the  following  notation, which corre- 
sponds  more  closely to  that of reference 2, is used: 

"k unit  vector normal to kth coordinate  direction 

X1 streamwise coordinate x 

x2 , x3  cross-section coordinate corresponding to y  and z, respectively 

Subscripts : 

i coordinate index  ranging  from 1 to 3 

k coordinate index  taking on values of 2  and  3 

The summation  convention is also used. 

In  this  notation,  equation (11) becomes 

and  equations (7) become 

Now, substituting equations (A2) for L  and R into  equation  (Al) gives 
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I 1  I l l  

APPENDIX 

Equation (A3) presents a potential problem as a consequence  of the  method of 
weighted  residuals. The  differential  operators L and !L contain deriva- 
tives as high as second  order  with  the possibility of introducing  discontinu- 
ities  into  the integrands at points in the flow field.  The certainty of finite 
derivatives can  be  improved if the  order of -L and !L can be  reduced. 

The Green-Gauss  theorem, given by 

provides a means for  reducing  the  order of the  operators.  The  first  term of 
equation (A3) can be  modified  to  fit  the  form of equation (A4) as follows: 

Note  that  the functional notation  has  been  dropped  to simplify the  equations. 
BY identifying @ with ({@)IO and 'Y with qm,  the  Green-Gauss  theorem can 
be  applied  to  the first term of equation (A3) to  give 
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APPENDIX 

Substituting equation (A6) into equation (A3) then gives 

where fm = f (&, aq:/8xi,xi) and gm = g qmtx1 . Note that the derivative 
order of equation (A7) has been lowered by 1 with respect to equation (A3) .  

Now, since X is  an arbitrary algebraic multiplier, choose Aai2) equal to 
K for aR,,, n a R  nonvanishing (ref. 7)  ; this choice causes the first term of 
equation (A7) to cancel with the second term of the fourth integral only where 

* * 
( *  1 

and a R  correspond. This leaves 

Equation (A8) provides the solution algorithm for  each finite-element sub- 
domain. To establish the solution for the entire duct cross-sectional plane 
(the global solution), equation (A8) is first evaluated for each of the M 
finite elements (m = 1, 2, . . . , M) . For each element, three first-order 
ordinary differential equations result for each dependent variable. These 
three equations are now summed (assembled) over the M finite elements accord- 
ing to Boolean algebra (symbol U) to give a 3 x M equation system that will 
produce the global solution.  Thus, the global solution is 
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APPENDIX 

1 

Now, i n   acco rdance  wi th  r e fe rence  1 4 ,  s i n c e  (0) is a l i n e a r   f u n c t i o n ,   t h e  
s u r f a c e   c o n t r i b u t i o n s   r e s u l t i n g  from the  f i r s t  i n t e g r a l  of equat ion  (A9) can 
be made to c a n c e l   i n  pairs upon assembly. Th i s  r e s u l t  is physical ly   meaningful  
s i n c e  the e v a l u a t i o n  of the   su r f ace   i n t eg ra l   w i th   ou tward   po in t ing   no rma l   abou t  
a common s i d e  of ad jacent   e lement  pairs would give  equal   and opposite va lues  
t h a t  would cance l  when their a l g e b r a i c  sum was taken. Then, equat ion  ( ~ 9 )  
becomes 

After the n o t a t i o n  is changed to that o f   t he  main t e x t ,   e q u a t i o n  (A10) is 
i d e n t i c a l  to equat ion  (12)   and is t h e  basis of the  so lu t ion   a lgo r i thm for a l l  
dependen t   va r i ab le s   i n  COMOC. 
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TABLE I .- TEST  CONDITIONS 

. - ~ . I -  I 

X = 0.7369 I 1.600 I 3.791 
__ . . . . . 

TT A *  R 

294 

294 294 1 5.826 I 0.1582 I 
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TABLE 11.- EXPERIMENTAL  DATA  AT  UPSTREAM  STATION (x = 0.0421 m) 

Y, 
m 

-0.0127 

-0.0102 

-0.0076 

-0.005 1 

-0.0025 

2, 
m 

0.0173 
.0127 
.0064 

0 -. 0058 
-.0119 
-.0160 

0.0173 
.0127 
.0064 

0 
-. 0058 
-.0119 
-.0160 

0.0173 
.0127 
.0064 

0 
-. 0058 
-.0119 -. 01  60 
0.0173 
.0127 
.0064 

0 -. 0058 
-.0119 
-.0160 

0.0173 
.0127 
.0064 

0 
- .0058 
-.0119 
-.0160 

u, 
m/sec 

436 
497 
427 
460 
457 
45 1 
280 

424 
500 
433 
485 
460 
451 
295 

427 
494 
436 
51 2 
457 
45 1 
31 1 

457 
494 
43 6 
750 
454 
45 1 
305 

469 
494 
472 
1152 
451 
445 
348 

~~ 

~~~~ . 

P, 
MPa 

0.1172 
.1145 
.1124 

.1124 

.1145 

.1172 

0.1172 
.1145 
.1124 

.1124 

.1145 
,1172 

0.1172 
.1151 
.1124 
.1124 
.1124 
.I151 
.1172 

0.1172 
.1151 
.1124 
.1124 
.1124 
.1151 
.1172 

0.1172 
.1151 
.1124 
.1117 
.1124 
.I151 
.1172 

~ 1 3 1  

.1131 

.. .~. ~ .. - .. 

~" 

T, 
K 

20 1 
171 
203 
189 
191 
193 
256 

20 6 
171 
202 
182 
189 
192 
25 1 

204 
174 
20 1 
186 
191 
193 
246 

191 
173 
203 
163 
192 
193 
248 

185 
174 
204 
143 
195 
196 
234 

~~ 

"_I 

. . .. . -. . . 

fHe 9 

percent 

0 
.0484 
.097 1 

0 
0 

0 

0 
0 

.0318 

- 

.0762 

.873 

.00138 
0 
0 

0 
0 

4.67 

0 
0 

0 
0 

26.7 

.0804 

.0443 

.972 

.0166 . 00 138 
0 

0 

5.27 

- 

.289 

80.2 

0 
0 

.337 

. " . " - . "" - 
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TABLE 11. - Concluded 

Y 9  

m 

0 

0.0025 

0.0051 

0.0076 

2 9  

m 

0.0173 
.0127 
.0064 

0 -. 0058 -. 01  19 
-. 01 60 

u9 
MPa m/sec 

P9 

469 

445 
.1124 451 
.1103 1 I40 
.1124 518 
.I145 49 1 

0.1165 

.1165 314 

.1145 

0.0173 
.0127 
.0064 

0 -. 0058 
-.0119 
-.0160 

463 
500 
445 
686 
457 
454 
320 

0.1151 
.1131 
.I117 
.lo89 
.1117 
.I131 
.1151 

0.0173 
.0127 
.0064 

0 -. 0058 
-.0119 -. 01 60 
0.1173 
.0127 
.0064 

0 -. 0058 
-.Oll9 
-.0160 

454 

457 
.1110 460 
.lo69 500 
.1110 439 
.1117  503 

0.1103 

.1103 323 

.I117 

433 0.1089 
506 .1117 
439 .1103 
482 .lo55 
466 .1103 
4 60 .I117 
344 .io89 

T, fHe 9 

K percent 

184 

196 
.367 195 

77.7  143 
9.69 199 
0 175 
0 

0 246 
0 

188 

0 244 
0 192 
.0429 190 

20.9 170 
.760  199 

0 170 
0 

192 0 
169 0 
199 ,0762 
179 1.80 
189 .00276 
191 0 
243 0 

20 1 0 
168 0 

179 .214 
186 .00276 
189 0 
236 0 

199 .0734 
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TABLE 111.- EXPERIMENTAL  DATA  AT  DOWNSTREAM STATION (x = 0.7369 m> 

Y, 
m 

-0.0127 

-0.0063 

0 

0.0063 

0.0127 

36 

2, 
m 

0.0173 
,0127 
.0064 

0 -. 0058 
-.0119 
-.0160 

0.0173 
.0127 
.0064 

0 -. 0058 
-.Oll9 
-.0160 

0.0173 
.0127 
.0064 

0 -. 0058 
-.0119 
- . 01  60 
0.0173 
.0127 
.0064 

0 -. 0058 
-.0119 
-.0160 

0.0173 
.0127 
.0064 

0 -. 0058 
-.0119 
-.0160 

~~ 

u, 
m/sec 

338 
400 
436 
445 
438 
392 
324 

347 
403 
438 
450 
440 
395 
330 

342 
399 
435 
452 
448 
407 
43 1 

370 
410 
436 
456 
455 
425 
36 1 

360 
407 
435 
453 
454 
420 
359 

P, 
MF'a 

0.1793 
,1703 
.1648 
.1669 
.1600 
.1613 
.1641 

0.1786 
.1724 
.1669 
.1669 
.1613 
.1610 
.1627 

0.1779 
.1710 
.1655 
.1620 
.1565 
.1586 
.1620 

0.1544 
.1620 
.1600 
.1496 
.1469 
.1503 
,1524 

0.1627 
.1641 
.1606 
.1503 
.1475 
.1523 
.1538 

T ,  
K 

242 
226 
210 
207 
208 
223 
244 

23 8 
22 1 
21 0 
206 
208 
222 
243 

240 
222 
21 1 
205 
205 

239 

229 
217 
209 
202 
202 
21 1 
232 

233 
21 7 
209 
203 
202 
213 
233 

218 

fHe 9 

percent 

2.00 
2.34 
2.84 
3.02 
2.47 
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TABLE 1V.- COMPARISON  OF  THE  TWO  COMPUTATIONS  BASED ON SHIP  AND  COMOC 

Governing  equations 

Pressure  gradient 

Turbulence  model 

Reaction  model 

Numerical  scheme 

Region  of  computation 
(fig. 12) 

Number  of  grid  points 

Input  initial  flow 
field  data 

Number  of  streamwise 
stations  computed 

Total  computer 
storage 

Computing  time on 
Control  Data 
CYBER 175 

SHIP 

Parabolic  type  of  Navier- 
Stokes  equations 

Streamwise  and  transverse 

trk-€rt two-equation  model 

Equilibrium  reactions 

Finite  difference 

ABCDEFA 

261 sec 

COMOC 

Parabolic  type of Navier- 
Stokes  equations  with 
additional  boundary- 
layer-type  simplifications 

Streamwise  only 

Mixing-length  model 

Complete  reaction 

Finite  element 

ABCFA 

6 x 16 

u, p, T, P (v, w estimated 
from  continuity  equation) 

351 steps 

2650008 

1326 sec 
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Location 
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0 

Variable stored 
V 

W 

Others 

Figure 
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Figure 3.- Injector  strut  and  combustor  duct. All dimensions are in  meters. 
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Figure 4.- S t r u t   i n j e c t o r s .  All dimensions are i n  meters. 
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( b )  Static probe. 

Figure 5 . -  Probe t i p  details.  A l l  dimensions are i n  meters. 



Pro jec t i on  o f  i n j e c t o r s  

Upper wall 

Lower wall 

Figure 6.- Helium mass fraction contours. of duct cross  section a t  x = 0.7369 m. 
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Figure 7.- Mixing region of center  jet.. Tick marks represent   horizontal   and 
v e r t i c a l   l o c a t i o n  of probe  during  survey.  Dimensions are i n  meters. 
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Upper wall 

Lower w a l l  

(a)  x = 0.0421 m. mH& = 0.8433. 

Figure 8.- Helium mass f rac t ion   contours  of cen te r  je t  mixing  region. 
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Upper wall 

Lower wall 

(b) x = 0.7369 m .  mHe 0.9015. 

Figure 8. - Concluded. 
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(a) x = 0.0421 m. 

Figure 9.-  Streamwise velocity  contours.of  center jet mixing  region. 
Velocity is given  in m/sec. 
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Figure  9.-  Concluded. 
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Upper wal.1 

Lower wall 

(a)  x 0.0421 m. 

Figure 10.- S t a t i c   p re s su re   con tour s  of center  j e t  mixing  region. 
S t a t i c   p r e s s u r e  is g iven   i n  mPa. 
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Lower wall 

(b) x = 0.7369 m. 

Figure 10.- Concluded. 

50 



Upper wall 

I A244- 
/ 222 

- 

- 

- 

- 178 - 
L - 

-1 78 

A 2 0 0  I I I I I I I I 

Lower wall 

(a) x = 0.0421 m. 

Figure 11.- Static  temperature contours of center jet mixing region. 
Static temperature is  given  in K. 
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Upper wall 

Lower wal l  

(b) x 0.7369 m. 

Figure 1 1 .- Concluded. 
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ABCDEFA F in i   t e -d i f f e rence  domain 
ABCFA Fini  te-element domain 

Z 

t .01905 

Figure 12.- Sketch of computational  domains  and  coordinates. 
All dimensions  are  in  meters. 
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Figure 13.-  Experimental flow v a r i a b l e s  a t  i n i t i a l   s t a t i o n  (x  = 0.0421 m). 
S o l i d   l i n e s   i n d i c a t e   i n t e r p o l a t i o n .  
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Figure 14.- Comparison of .computation  and experimental  results  at 
downstream  station  (x = 0.7369 m). 
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Figure 14.- Continued. 
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